# Payback Analysis

The answer to the questions:

- How long before I get my money back?
- Which investment is financially better?

Presented by: Eric de Diesbach



#### Table of Contents

This presentation will cover (with an example):

- The questions & answers
- The components
- The calculation
- The Standard Payback Period
- The Discounted Payback Period
- Conclusion



## Payback Analysis: Questions

Everyone having to make an investment decision, such as purchasing equipment, installing a new production line, building a factory or acquiring a business faces the following questions:

- How long before I get my money back?
- Which of these investments is better?



### Payback Analysis: Answers

The Payback Period answers these questions: It tells the length of time (Weeks, months or years) before an investment reaches breakeven and begins to return a profit.



#### Payback Analysis: Components

This calculation must take into account Incomes, Expenses and Taxes:

- The shorter the payback period, the better;
- The longer the payback period, the longer funds are locked up and the riskier the project probably is.

Note: Depreciation should not be included in the calculation.



#### Payback Analysis: Calculation

Payback period = When cumulative net cash flow reaches break even

Payback period =

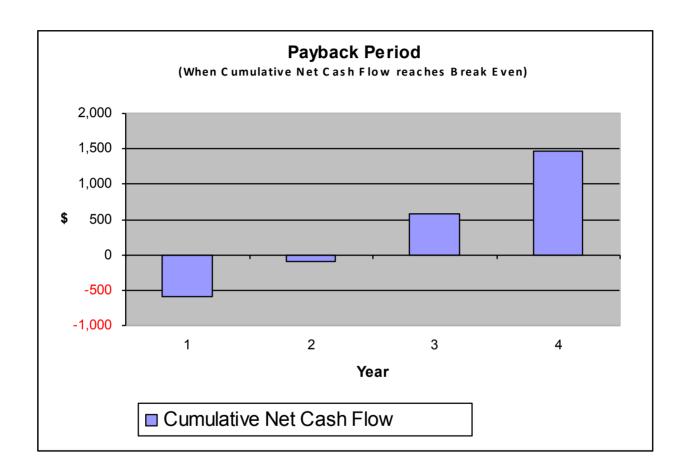
(Last year that will show a negative cash flow)

+

(Absolute cumulative net cash flow for that year / Total net cash flow in the following year)



### Payback Period Example


| Year:                                 | 0    | 1     | 2     | 3     | 4     |
|---------------------------------------|------|-------|-------|-------|-------|
| Total Increase in Sales/Revenues      |      | 500   | 1,000 | 1,400 | 1,800 |
| Total Increase in Costs/Expenses      |      | -200  | -300  | -420  | -540  |
| Increase/(Decr.) in Profit Before Tax |      | 300   | 700   | 980   | 1,260 |
| Corporate Tax (30%)                   |      | -90   | -210  | -294  | -378  |
| Minus: Investment                     | -800 |       |       |       |       |
| Net Cash Flow for the Year            | -800 | 210   | 490   | 686   | 882   |
| Cumulative Net Cash Flow              | -800 | -590  | -100  | 586   | 1,468 |
| Payback Period =                      | 2.1  | years |       |       |       |

#### In this example:

- Payback Period = 2 + 100/686 = 2.1 years
- Cumulated Net Cash Flow end of Year 4 = \$1,468



## Payback Period Example



The same results presented in a graphic.

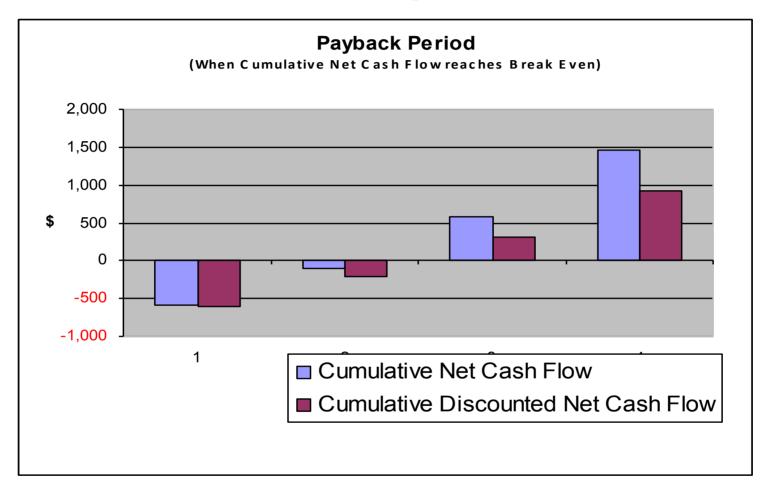


#### Payback Period Limitations

- One limitation to the Payback Period is that it does not consider the time value of money: One \$ today is worth more than one \$ tomorrow (Or the other way around: One \$ tomorrow is worth less than one \$ today).
- The way to remove this limitation is by calculating the <u>Discounted</u> Payback Period. It is the same calculation, but taking into consideration the time value of one dollar.



#### Discounted Payback Period


| Year:                                      | 0      | 1      | 2      | 3      | 4      |
|--------------------------------------------|--------|--------|--------|--------|--------|
| Total Increase in Sales/Revenues           |        | 500    | 1,000  | 1,400  | 1,800  |
| Total Increase in Costs/Expenses           |        | -200   | -300   | -420   | -540   |
| Increase/(Decr.) in Profit Before Tax      |        | 300    | 700    | 980    | 1,260  |
| Corporate Tax (30%)                        |        | -90    | -210   | -294   | -378   |
| Minus: Investment                          | -800   |        |        |        |        |
| Net Cash Flow for the Year                 | -800   | 210    | 490    | 686    | 882    |
| Cumulative Net Cash Flow                   | -800   | -590   | -100   | 586    | 1,468  |
| Payback Period =                           | 2.1    | years  |        |        |        |
| Discount Factor (at Cost of Funding = 10%) | 1.0000 | 0.9091 | 0.8264 | 0.7513 | 0.6830 |
| Discounted Net Cash Flow for the Year      | -800   | 191    | 405    | 515    | 602    |
| Cumulative Discounted Net Cash Flow        | -800   | -609   | -204   | 311    | 914    |
| Discounted Payback Period =                | 2.4    | years  |        |        |        |

Applying a discount factor for cost of funding = 10%:

- Discounted Payback Period = 2 + 204/515 = 2.4 years
- Cumulated Discounted Net Cash Flow end of Year 4 = \$914



#### Discounted Payback Period



The same results presented in a graphic.



#### The 2 Payback Periods

 We begin to see a difference when taking into consideration a 10% funding cost (Not uncommon in Australia!):

Standard: Payback Period = 2.1 years

Discounted: Payback Period = 2.4 years

But look at the Cash Flow:

Standard: Cumulated Net Cash Flow = \$1,968

Discounted: Cumulated Net Cash Flow = \$ 914

→ Less than half of what was expected:

What a massive difference!



#### Payback Analysis: Conclusion

- Any mistake or oversight can be very costly:
  - Not only can the break-even point be further away than you think;
  - But the cumulated cash benefit can easily be half of what you expect!
- Do not leave your investment decision to chance:
  - Do your calculations;
  - Or hire an expert to do them for you!



#### Contact the expert:

#### Eric de Diesbach

- Financial Management
- Capital Management
- Return on Investment

eric.dediesbach@informgroup.com.au www.informgroup.com.au

